Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(isopropylamino)methylcarbenium tetrakis(pentafluorophenyl)gallate

Ilia A. Guzei, ${ }^{\text {a* }}$ Samuel Dagorne ${ }^{\text {b }}$ and Richard F. Jordan ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, lowa State University of Science and Technology, Ames, lowa 50011, USA, and ${ }^{\text {b }}$ Department of Chemistry, The University of Chicago, 5735 South Ellis Ave., Chicago, IL 60637, USA
Correspondence e-mail: iguzei@iastate.edu
Received 11 January 2000
Accepted 10 March 2000
Data validation number: IUC0000075
The title compound, $\left[\mathrm{MeC}\left(\mathrm{NH}^{i} \operatorname{Pr}\right)_{2}\right]\left[\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ crystallizes as discrete ions forming interionic hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$.

Comment

As part of our reactivity studies of cationic Group 13 metal complexes (Coles \& Jordan, 1997; Ihara et al., 1998; Radzewich et al., 1998, 1999), the reaction of the Ga amidinate salt $\left[\left\{\mathrm{MeC}\left(\mathrm{N}^{\mathrm{i} P r}\right)_{2}\right\}_{2} \mathrm{Ga}_{2} \mathrm{Me}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, (I), with $\mathrm{H}_{2} \mathrm{O}$ was investigated. Compound (I) reacts readily with $\mathrm{H}_{2} \mathrm{O}$ to yield the title compound, (II).

Complex (II) crystallizes as discrete acetamidinium cations $\left\{\mathrm{MeC}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)_{2}\right\}^{+}$and $\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$anions that form interionic hydrogen bonds. There are two likely hydrogen-bonding interactions $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 21\left(\frac{1}{2}-x, \quad \frac{1}{2}+y, \quad z\right)$ and $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{~F} 16\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$, with $\mathrm{N} \cdots \mathrm{F}$ separations of 3.121 (4) and $3.135^{(3)} \AA$, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ angles of 162 and 167°, respectively.

The bond distances and angles in the cation (Table 1) are very similar to those in the closely related acetamidinium cations in $\left[\mathrm{MeC}\left(\mathrm{NH}_{2}\right)_{2}\right] \mathrm{Cl}$ (Cannon et al., 1976) and $\left[\left\{\mathrm{MeC}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right] \mathrm{CO}_{3}$ (Norrestam, 1984). The bond angles about the central C28 atom [average $120.0(6)^{\circ}$] are very similar and their sum is $c a 360^{\circ}$, as expected for an $s p^{2}$-carbon. The bond distances C28-N1 [1.306 (4) A] and C28-N2 [1.311 (4) \AA] are statistically equivalent. These bond distances are intermediate between normal $C s p^{2}-\mathrm{N}$ single (1.458 \AA;

Sutton, 1965) and $\mathrm{C}=\mathrm{N}$ double [1.271 (2) \AA; Levine, 1963] bond distances and are similar to those in $\left[\left\{\mathrm{MeC}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right] \mathrm{CO}_{3}$ (Norrestam, 1984). Thus, the π electrons are delocalized over the NCN unit. The $\mathrm{N}^{i} \mathrm{Pr}$ units are normal and the C27 and C30 ${ }^{i} \operatorname{Pr}$ groups are oriented syn and anti with respect to the C29 Me group [torsion angles: C30-N2-C28-C20-176.8 (3) ; C27-N1-C28-C29 0.3 (5) ${ }^{\circ}$].

The $\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$anion adopts a nearly ideal tetrahedral structure. The angles about Ga range between 105.0 (1) and $112.8(1)^{\circ}$, and thus remain close to the ideal tetrahedral angle of 109.47°. The $\mathrm{Ga}-\mathrm{C}$ bond lengths [average 2.009 (13) \AA] are in excellent agreement with the $\mathrm{Ga}-\mathrm{C}$ distances in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ [average 2.01 (2) \AA; Tebbe et al., 1996] and are slightly longer than those in GaPh_{3} [average 1.957 (16) Å; Malone \& McDonald, 1970], probably due to a less electrophilic Ga center in $\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$.

Experimental

Analytically pure (II) ($70 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in wet $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(c a 0.5 \mathrm{ml})$ and layered with pentane (ca 3 ml). Colorless crystals of (II) formed after 3 d at 296 K .

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}_{2}\right)\left[\mathrm{Ga}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$	Mo $K \alpha$ radiation
$M_{r}=881.21$	Cell parameters from 5204
Orthorhombic, Pbca	reflections
$a=21.4651(12) \AA$	$\theta=2-27^{\circ}$
$b=13.3773(8) \AA$	$\mu=0.959 \mathrm{~mm}^{-1}$
$c=23.3868(14) \AA$	$T=193(2) \mathrm{K}$
$V=6715.4(7) \AA^{3}$	Block, yellow
$Z=8$	$0.35 \times 0.32 \times 0.10 \mathrm{~mm}$

$D_{x}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
$0.35 \times 0.32 \times 0.10 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ scans
Absorption correction: empirical
(SADABS; Blessing, 1995)
$T_{\text {min }}=0.730, T_{\text {max }}=0.910$
31325 measured reflections
6850 independent reflections

Refinement

Refinement on F^{2}
3685 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$R_{\text {max }}=26.37^{\circ}$
$h=0 \rightarrow 26$
$k=0 \rightarrow 16$
$l=0 \rightarrow 29$
Intensity decay: $<1 \%$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$

$w R\left(F^{2}\right)=0.075$
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0180 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
6850 reflections
501 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\max }=0.54 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\min }=-0.62 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ga}-\mathrm{C} 1$	$1.993(3)$	$\mathrm{N} 1-\mathrm{C} 28$	$1.306(4)$
$\mathrm{Ga}-\mathrm{C} 13$	$2.005(3)$	$\mathrm{N} 1-\mathrm{C} 27$	$1.454(4)$
$\mathrm{Ga}-\mathrm{C} 7$	$2.019(3)$	$\mathrm{N} 2-\mathrm{C} 28$	$1.311(4)$
$\mathrm{Ga}-\mathrm{C} 19$	$2.020(3)$	$\mathrm{N} 2-\mathrm{C} 30$	$1.472(4)$
$\mathrm{C} 1-\mathrm{Ga}-\mathrm{C} 13$	$105.03(12)$	$\mathrm{C} 13-\mathrm{Ga}-\mathrm{C} 19$	$110.62(13)$
$\mathrm{C} 1-\mathrm{Ga}-\mathrm{C} 7$	$111.78(13)$	$\mathrm{C} 7-\mathrm{Ga}-\mathrm{C} 19$	$105.18(13)$
$\mathrm{C} 13-\mathrm{Ga}-\mathrm{C} 7$	$111.54(13)$	$\mathrm{C} 28-\mathrm{N} 1-\mathrm{C} 27$	$127.3(3)$
$\mathrm{C} 1-\mathrm{Ga}-\mathrm{C} 19$	$112.84(13)$	$\mathrm{C} 28-\mathrm{N} 2-\mathrm{C} 30$	$126.9(3)$

Data collection: SMART (Bruker, 1996); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1996). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cannon, J. R., White, A. H. \& Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271-272.

Coles, M. P. \& Jordan, R. F. (1997). J. Am. Chem. Soc. 119, 8125-8126.
Ihara, E., Young, V. G. Jr \& Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 82778278.

Levine, I. R. (1963). J. Chem. Phys. 38, 2326-2328.
Malone, J. F. \& McDonald, W. S. (1970). J. Chem. Soc. A, pp. 3362-3367.
Norrestam, R. (1984). Acta Cryst. C40, 297-299.
Radzewich, C. E., Coles, M. P. \& Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 9384-9385.
Radzewich, C. E., Guzei, I. A. \& Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 8673-8674.
Sheldrick, G. M. (1997). SHELXTL (Version 5.1), SHELXL97 and SHELXS97. Bruker AXS Inc., Madison, Wisconsin, USA.
Sutton, L. E. (1965). Interatomic Distances and Configuration in Molecules and Ions, Special Publications No. 18. London: The Chemical Society.
Tebbe, K.-F., Gilles, T., Conrad, F. \& Tyrra, W. (1996). Acta Cryst. C52, $1663-$ 1666.

